rvenkatme.weebly.com

DEPT OF ECE

SEMBODAI RUKMANI VARATHARAJAN ENGINEERING COLLEGE SEMBODAI – 614809

(Approved By AICTE, New Delhi – Affiliated To ANNA UNIVERSITY::Chennai)

EC6612 -VLSI DESIGN LABORATORY MANUAL (REGULATION-2013)

LAB MANUAL

DEPARTMENT OF ECE

NAME: _____

REGISTER NUMBER:_____

YEAR/SEM.: _____

ACADEMIC YEAR: <u>2015 - 2016</u>

DEPT OF ECE

EC6612 -VLSI DESIGN LABORATORY MANUAL (REGULATION-2013)

Prepared By, VENKATASUBRAMANIAN.R AP/ECE/SRVEC Approved By, Mr.SUNDAR.G HOD/ECE/SRVEC

SEMBODAI RUKMANI VARATAHARAJAN ENGINEERING COLLEGE SEMBODAI - 614809

EC6612 -VLSI DESIGN LABORATORY MANUAL (REGULATION-2013) AS PER ANNA UNIVERSITY SYLLABUS

LIST OF EXPERIMENTS

LIST OF EXPERIMENTS FPGA BASED EXPERIMENTS

1. HDL based design entry and simulation of simple counters, state machines, adders (min 8 bit) and multipliers (4 bit min).

2. Synthesis, P&R and post P&R simulation of the components simulated in (I)above. Critical paths and static timing analysis results to be identified. Identify and verify possible conditions under which the blocks will fail to work correctly.

3. Hardware fusing and testing of each of the blocks simulated in (I). Use of either chip scope feature (Xilinx) or the signal tap feature (Altera) is a must. Invoke the PLL and demonstrate the use of the PLL module for clock generation in FPGAs.

IC DESIGN EXPERIMENTS: (BASED ON CADENCE / MENTOR GRAPHICS / EQUIVALENT)

4. Design and simulation of a simple 5 transistor differential amplifier. Measure gain, ICMR, and CMRR

5. Layout generation, parasitic extraction and re simulation of the circuit designed (I)

6. Synthesis and Standard cell based design of an circuits simulated in 1(I) above. Identification of critical paths, power consumption.

7. For expt (c) above, P&R, power and clock routing, and post P&R simulation.

8. Analysis of results of static timing analysis.

rvenkatme.weebly.com

DEPT OF ECE

TABLE OF CONTENT

SL.NO	EXPERIMENTS
1.	SIMULATION FOR BASIC GATES USING XILINX
2.	SIMULATION FOR HALFADDER USING XILINX
3.	SIMULATION FOR FULL ADDER USING XILINX
4.	SIMULATION FOR MUX AND DEMUX USING XILINX
5.	SIMULATION FOR DECODER USING XILINX
6.	SIMULATION FOR ENCODER USING XILINX
7.	SIMULATION FOR PRBS GENERATOR USING XILINX
8.	SIMULATION FOR ACCUMULATOR USING XILINX
9.	SIMULATION FOR D FLIP FLOPS USING XILINX
10.	SIMULATION FOR JK FLIP FLOPS USING XILINX
11.	SIMULATION FOR SR FLIP FLOPS USING XILINX
12.	SIMULATION FOR CMOS INVERTER USING XILINX
13.	DESIGN FOR DIFFERENTIAL AMPLIFIER USING TANNER
14.	DESIGN FOR CMOS LAYOUT USING TANNER
15.	DESIGN FOR VOLTAGE CONTROLLED OSCILLSTOR USING TANNER
16.	DESIGN FOR COUNTERS USING TANNER
17.	DESIGN FOR UP AND DOWN COUNTERS USING TANNER

Design entry and simulation of combinational logic circuits

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To study about the simulation tools available in Xilinx project navigator using Verilog tools.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	

b) Procedure for doing the experiment

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name.
3	Select Verilog module.
4	Type your Verilog coding.
5	Check for syntax.
6	Select the new source of test bench waveform
7	Choose behavioral simulation and simulate it by Xilinx ISE simulator.
8	Verify the output.

rvenkatme.weebly.com

WRATHARAJAN SHOL

SEMBODAL - 61482

Logic gates

AND GATE

module gl(a,b,c);

input a;

input b;

output c;

and(c,a,b);

end module

OR GATE

module gl(a,b,c);

input a;

input b;

output c;

or(c,a,b);

end module

XOR GATE

module gl(a,b,c);

input a;

input b;

output c;

xor (c,a,b);

end module

rvenkatme.weebly.com

ANATHARAJAN

MBODAL - SINGL

NAND GATE

module gl(a,b,c);
input a;

input b;

output c;

nand(c,a,b);

end module <u>NOR GATE</u>

module gl(a,b,c);

input a;

input b;

output c

nor(c,a,b);

end module

HALF ADDER

module half adder(a,b,c,s);

input a;

input b;

output c;

output s;

xor(s,a,b);

and(c,~a,b);

end module

rvenkatme.weebly.com

ARATHARAJAN

41 - 61482

HALF SUBTRACTOR

module half sub(a,b,c,s);

input a;

input b;

output c;

output s;

xor(s,a,b);

and(c,~a,b);

end module

ENCODER

module Encd2to4(i0, i1, i2, i3, out0,out1);
input i0,i1, i2, i3;
output out0, out1;
reg out0,out1;
always@(i0,i1,i2,i3)
case({i0,i1,i2,i3})
4'b1000:{out0,out1}=2'b00;
4'b0100:{out0,out1}=2'b01;
4'b0010:{out0,out1}=2'b10;
4'b0001:{out0,out1}=2'11;
default:
\$display("Invalid");
endcase
endmodule

rvenkatme.weebly.com

ARAJA

61482

DECODER

// Module Name: Decd2to4 module Decd2to4(i0, i1, out0, out1, out2, out3); input i0, i1; output out0, out1, out2, out3; reg out0,out1,out2,out3; always@(i0,i1) $case(\{i0,i1\})$ 2'b00: {out0,out1,out2,out3}=4'b1000; 2'b01: {out0,out1,out2,out3}=4'b0100; 2'b10: {out0,out1,out2,out3}=4'b0010; 2'b11: {out0,out1,out2,out3}=4'b0001; default: \$display("Invalid"); endcase endmodule

rvenkatme.weebly.com

NBATHARAJAH EN

1800AL 61482

MULTIPLEXER

// Module Name: Mux4to1

module Mux4to1(i0, i1, i2, i3, s0, s1, out); input i0, i1, i2, i3, s0, s1;

output

out; wire

s1n,s0n;

wire

y0,y1,y2,y3;

not (s1n,s1);

not (s0n,s0); and (y0,i0,s1n,s0n); and (y1,i1,s1n,s0); and

(y2,i2,s1,s0n);

and

(y3,i3,s1,s0);

or

(out,y0,y1,y2,y3); endmodule

DEMULTIPLEXER

// Module Name: Dux1to4
module Dux1to4(in, s0, s1, out0, out1, out2, out3);
input in, s0, s1;
output out0, out1,
out2,out3; wire s0n,s1n;
not(s0n,s0);
not(s1n,s1);
and (out0,in,s1n,s0n);
and (out1,in,s1n,s0);
and (out2,in,s1,s0n);
and (out3,in,s1,s0);
endmodule
EC6612 VLSI DESIGN LAB /R.VENKATASUBRAMANIAN / AP/ ECE / SRVEC

rvenkatme.weebly.com

RATHARAJAA

8 BIT ADDER

module adder(a,b, s,c); input [7:0] a,b; output [7:0] s,c; assign {c,s} = a + b; endmodule

MULTIPLIER

module multi(a,b,c);
input [3:0] a,b;
output [7:0] c;
assign c = a * b;
endmodule

<u>RESULT</u>

Thus the program for study of simulation using tools and the output also verified successfully.

Design Entry and simulation of sequential logic circuits

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To study about the simulation tools available in Xilinx project navigator using Verilog tools.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	1

b) Procedure for doing the experiment

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name
3	Select Verilog module.
4	Type your Verilog coding
5	Check for syntax
6	Select (view RTL schematic) from the synthesis-XST menu
7	Verify the logic circuit and equivalent parameters.

rvenkatme.weebly.com

ATHARAJAN

61482

PRBS GENERATORS

module prbs(a,clk,clr); output [3:0] a;

input clk,clr; reg [3:0]

tmp;

always @(posedge clk or posedge clr)

begin

if(clr)

begin

tmp = 4'b1111;

end

else

begin

tmp = { tmp[0]^tmp[1],tmp[3],tmp[2],tmp[1]};

end

end

assign a=tmp;

endmodule

ACCUMULATOR

```
module acc(indata, clk,clr, outdata);
input [3:0] indata;
input clk,clr;
output [3:0] outdata;
reg [3:0] outdata;
always@(posedge clk or posedge clr)
begin
if(clr)
outdata <= 4'd0;
else
outdata <= indata;
end
endmodule
```

2- BIT COUNTER

// Module Name: Count2Bit

module Count2Bit(Clock, Clear, out);
input Clock, Clear;

output [1:0] out;

reg [1:0]out;

always@(posedge Clock, negedge Clear)

if((~Clear) || (out>=4))

out=2'b00;

else

out=out+1;

endmodule

<u>RESULT</u>

Thus the program for study of simulation using tools and the output also verified successfully.

rvenkatme.weebly.com

Study of Synthesis Tools

Ex.No:

Date:

ENI

OBJECTIVE OF THE EXPERIMENT

To study about synthesis tools available in Xilinx project navigator.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	221

b) Procedure for doing the experiment

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name
3	Select Verilog module.
4	Type your Verilog coding
5	Check for syntax
6	Select (view RTL schematic) from the synthesis-XST menu
7	Verify the logic circuit and equivalent parameters.

<u>THEORY</u>

Now that you have created the source files, verified the design behaviour with simulation, and added constraints, you are ready to synthesize and implement the design.

Implementing the Design

1. Select the **counter** source file in the Sources in Project window.

2. In the Processes for Source window, click the "+" sign next to

Implement Design. The Translate, Map, and Place & Route processes are displayed. Expand those processes as well by clicking on the "+" sign. You can see that there are many sub-processes and options that can be run during design implementation.

3. Double-click the top level **Implement Design** process.ISE determines the current state of your design and runs the processes needed to pull your design through implementation. In this case, ISE runs the Translate, Map and PAR processes. Your design is now pulled through to a placed-and routed state. This feature is called the "pull through model."

4. After the processes have finished running, notice the status markers in the Processes for Source window. You should see green checkmarks next to several of the processes, indicating that they ran successfully. If there are any yellow exclamation points, check the warnings in the Console tab or the Warnings tab within the Transcript window. If a red X appears next to a process, you must locate and fix the error before you can continue.

20	×4/21	
Ele Edit View Historyta Dattare Electrola Window Hele		
He Edic View Herarchy Pattern Hoorplan Window Hep		
□ ☞ 🖪 🖶 🍾 🕺 ≡ 13 13 45 55 45 14 14 15 16 16 16 18	2 4 % X L L X L D	
🛱 counter.fnf Design Hie 📮 🗖 🗙 🕅 👝		
E counter Towarder 16 10Pa 4 FC	ement for xc3s200-4-ft256	_ O ×
		-
Count int 3 11 DEF 19 count		
Count int 31 DFF 19 count int	• • •	
Count_int_2 [DFF] Q count_int		
Gount_int_1 [DFF] Q count_int		
count_int_0 [DFF] Q count_int		
count_int_Maddsub_n0000_f		
Count_int_Maddsubn0000_/		
count_int_Maddsubn0000_/		
count_int_Maddsub_n0000_/		
DIRECTION FOB FPAD DIREC		
COUNT_OUT<05 LIOB 1PAD C		
CLOCK LIOB 1 PAD CLOCK I CLC	D0	
	P0 V4	
· · · · · · · · · · · · · · · · · · ·		
I → //	0	
	E 10 11	
😤 counter.fnf Design Ne 🛄 🗖 🗶		
CLOCK BUFGP/IBUFG		
count_int_Maddsubn0000_Mcor_Result c3		
count int Maddaub n0000 Moor Result (3)		
count_ht_Moddaub_n0000_Moor_Reault<12		
count int 3.1		
COUNT_OUT-do		
CIOCK		
		•

Figure 1: Floor planner View - Detailed View

rvenkatme.weebly.com

DEPT OF ECE

File Edit View Project Source Process Simulation	Window Help					<u>»</u>
isig s fye lere p 🗚		-	Ŷ			
Sources in Project	Design Overview for counter	er		<u> </u>		
- CI xc3s200-4ft256	Property	Valu	е			
- V counter (counter.v)	Project Name:	c:\dat	a\xilinx\	tutorial		
testbench (testbench tbw)	Target Device:	xc3s2	00			
t Modulo View to Snanchot View D Library View	Report Generated:	Mond	lay 12/2	0/04 at 18:4	1	
	Printable Summary (View a	as HTML) count	er sum	mary.html		
rocesses for Source: "counter" Add Existing Source	Logic Utilization	/ 	Used	Available	Utilization	Note(s)
Create New Source	Number of Slice Flip Flops	a:	4	3,840	1%	
- 🔀 View Design Summary	Number of 4 input LUTs:		4	3,840	1%	
🗄 💅 Design Utilities 🗟	Logic Distribution:					
Create Schematic Symbol	Number of occupied Slice	S:	3	1,920	1%	
	Number of Slices containin	ng only related	3	3	100%	
Check Syntax for Simulation		ng unrelated	0	3	0%	
View Command Line Log File Check Syntax for Simulation Launch Xilinx ISE Simulator View HDL Instantiation Template	Number of Slices containin logic:			0.040	1%	
View Command Line Log File Check Syntax for Simulation Launch Xilinx ISE Simulator View HDL Instantiation Template View Constraints	Number of Slices containin logic: Total Number of 4 inpu	t LUTs:	4	3,840		
Tiew Command Line Log File Check Syntax for Simulation Launch Xlinx ISE Simulator Work MIDL Instantiation Template View HDL Instantiation Template Create Timing Constraints Create Timing Constraints	Number of Slices containin logic: Total Number of 4 input Number of bonded IOBs:	ıt LUTs:	4	3,840	3%	
View Command Line Log File Check Syntax for Simulation Launch Xilinx ISS Simulator View HDL Instantiation Template User Constraints Create Timing Constraints Assign Package Pins	Number of Slices containin logic: Total Number of A inpu Number of bonded IOR: Performance Summary	ıt LUTs:	4	3,840	3%	
View Command Line Log File Check Syntax for Simulation Launch Xilinx ISS Simulator View HDL Instantiation Template User Constraints Create Timing Constraints Create Area Constraints	Number of Slices containin logic: Total Number of 4 inpu Number of honded IOBer Performance Summary Property	tt LUTs:	4	3,840	3%	
View Command Line Log File Check Syntax for Simulation Launch Xilm XISE Simulator View HDL Instantiation Template View HDL Instantiation Template View HDL Instantiation Template View Constraints Assign Package Pins Create Area Constraints Edit Constraints (Text)	Number of Slices containin logic: Total Number of 4 inpu Number of honded IOBe Performance Summary Property Number of Unrouted Signa	tt LUTs:	4 A	3,840 173	۹%. ed.	

Figure 2: Design Summary View

<u>RESULT</u>

Thus the program to study about synthesis tools available in Xilinx project navigator and the output also verified successfully.

Study of Place and Root-Back Annotation

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To study about place and back annotation in xilinx project navigator using verilog coding.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment:

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx ISE – 9.1 navigator.	1

b) Procedure for doing the experiment:

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name.
3	Select Verilog module
4	Type your Verilog coding
5	Check for syntax.
6	Assign package pins and view floor planner diagram of the FPGA.
7	Make necessary changes in the diagram if required.
8	Save the changes, back annotate the changed constraints
9	Verify the UCF that changes are updated
10	Get the length of the sequence as N.

rvenkatme.weebly.com

THEORY

After implementation is complete, you can verify your design before downloading it to a device.

Viewing Placement

In this section, you will use the Floor planner to verify your pin outs and placement. Floor planner is also very useful for creating area groups for designs.

1. Click on the **Design Summary** tab at the bottom of the window. If you closed the summary during this tutorial, you can reopen it by double clicking the **View Design Summary** process.

Eile Edit View Analyze	<u>Mindow</u> <u>H</u> elp
D 🛎 🖬 🕨 🎒 🕺 🖻 🖻	- 🗵 🌣 🗵 💷 🖶 🥓 😢
Timing Report Description INFO Messages Timing Constraints TS_CLOCK = PERIOD TIME	Timing summary
⊕ OFFSET = IN 10 ns BEFOR ⊕ OFFSET = OUT 10 ns AFTE ⊂ Constraint compliance ∋ Data Sheet report: _ Setup/Hold to clock CLOCk _ Clock CLOCK to Pad _ Clock to Setup on destinati	Timing summary: Timing errors: 0 Score: 0 Constraints cover 18 paths, 0 nets, and 23 connections
- Timing summary - Timing Analyzer Styttings:	 The minimum period statistic assumes all single cycle delays.

Figure 1: Timing Analyzer - Timing Summary

2.In the Device Utilization Summary section, observe the number of Slice Flip Flops that were used during implementation. You should see 4 flip flops, since you implemented a 4-bit counter.

3. To see other reports, scroll to the bottom of the Design Summary. You can click on a report from here to view it in the ISE Text Editor.

Figure 2: FPGA Editor - Detailed View

Timing Closure

In this section, you will run timing analysis on your design to verify that your timing constraints were met. Timing closure is the process of working on your design to ensure that it meets your necessary timing requirements. ISE provides several tools to assist with timing closure.

1. In the Processes for Source window, under the Place & Route group of processes, expand the **Generate Post-Place & Route Static Timing** group by clicking the

"+"sign.

2. Double-click the Analyse Post-Place & Route Static Timing process. The Timing Analyser opens.

3. To analyse the design, select **Analyse Against Timing Constraints.** The Analyse with Timing Constraints dialog box opens.

4. Click **OK**. When analysis is complete, the timing report opens.

5. Select **Timing summary** from the Timing Report Description tree in the left window. This displays the summary section of the timing report, where you can see that no timing errors were reported. Close the Timing Analyser without saving.

Viewing the Placed and Routed Design

In this section, you will use the FPGA Editor to view the design. You can view your design on the FPGA device, as well as edit the placement and routing with the FPGA Editor.

1. Double-click the **View/Edit Routed Design** (**FPGA Editor**) process found in the Place & Route group of processes. Your implemented design opens in the FPGA Editor.

2. Look in the **List** window to examine your design components.

3. Click on the **COUNT_OUT K12** IOB in the List window to select the row. This is one of the outputs in your design.

4. With the COUNT_OUT K12 row selected, select **View** _ **Zoom Selection**. In the editor window, you can see the COUNT_OUT<0> IOB highlighted in red.

5. Push into (double-click) the red-highlighted COUNT_OUT K12 IOB. You should see Fig 2.

6. Enlarge the window and zoom in so you can see more detail. This view shows the inside of an FPGA at the lowest viewable level. The blue line

and the Photo of

shows the route that is used through the IOB. The red lines show the routes that are available.

7. Verify that the signal goes to the pad as an output.

8. Close the FPGA Editor.

- 1.T.H.O.M.O. 1.4 -
ò Xilinx - Project Navigator - C:\Data\Xilinx\tutorial\tutorial.ise -
Eile Edit View Project Source Process Simulation Window
Sources in Project:
tutorial.ise
⊡
⊡ V counter-behavioral (counter.vhd)
testbench (testbench.tbw)
Madula View 👉 Spanshat View 🕞 Library View
X
Processes for Source: "testbench"
Add Existing Source
Create New Source
View Generated Test Bench As HDL
Add lest Bench To Project
Xilinx ISE Simulator
Simulate Behavioral Model
Simulate Post-Place & Route HDL Model

Figure 3: Simulator Processes for Test Bench

Figure 4: Timing Simulation in ISE Simulator

<u>Timing Simulation (ISE Simulator)</u>

can verify that your design meets your timing requirements by running a timing simulation. You can use the same test bench waveform that was used earlier in the design flow for behavioral simulation. When running timing simulation, the ISE tools create a structural HDL file which includes timing information available after Place and Route is run. The simulator will run on a model that is created based on the design to be downloaded to the FPGA. If you are using ISE Base or Foundation, you can simulate your design with the ISE Simulator. To simulate your design with Modalism, skip to the "Timing Simulation (ModelSim)" section. To run the integrated simulation processes:

1. Select the test bench waveform in the Sources in Project window. You can see the ISE Simulator processes in the Processes for Source window.

2. Double-click the Simulate Post-Place & Route Model process. This process generates a timing-annotated net list from the implemented and simulates it. The resulting simulation is displayed in the Waveform Viewer. These results look different than those you saw in the behavioural simulation earlier in this tutorial. These results show timing delays.

3. To see your simulation results, zoom in on the transitions and view the area between 300 ns and 900 ns to verify that the counter is counting up and down as directed by the stimulus on the DIRECTION port.

4. Zoom in again to see the timing delay between a rising clock edge and output transition.

5. Click the Measure Marker button and then click near the 300 ns mark. Drag the second marker to the point where the output becomes stable to see the time delay between the clock edge and the transition.

6. Close the waveform view window. You have completed timing simulation of your design using the ISE Simulator. Skip past the ModelSim section below, and proceed to the "Creating Configuration Data" section.

<u>RESULT</u>

Thus the program for perform the place and root-back annotation was studied and the output also verified successfully.

CMOS Inverter

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To perform the functional verification of the CMOS Inverter through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	S-Edit using cadance Tool.	1

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the schematic of CMOS Inverter using S-edit.
2	Perform Transient Analysis of the CMOS Inverter.
3	Obtain the output waveform from W-edit
4	Obtain the spice code using T-edit.

THEORY

Inverter consists of nMOS and pMOS transistor in series connected between VDD and GND. The gate of the two transistors are shorted and connected to the input. When the input to the inverter A = 0, Nmos transistor is OFF and pMOS transistor is ON. The output is pull-up to VDD. When the input A = 1, nMOS transistor is ON and pMOS transistor is OFF. The Output is Pull-down to GND.

rvenkatme.weebly.com

SCHEMATIC DIAGRAM

SIMULATED WAVEFORM:

Tanne	r T-Spice	15.10	C:\D	OCUME~1	VLSI\LOCA	ALS~1\Tem	p\prabhuu.s	р	11:37:16 A	M 11/30/2011
5.000 -	Out:V						e			
						1				
4.000										
	-									
- 000 - <										
2.000-										
1.000 -										
0.000 -		1	_l	/	l				l,	
5.000 -	In:V	-		i	1				i	
4.000 -					[
3.000										
\$ _{2,000} -										
	-	1)						
1.000 -	2									
0.000 -				<u> </u>		<u> </u>				
0.0	00 1	0.0n 2	:00.0n 300	.0n 400	0.0n 500 Seco	.0n 600 nds	.0n 700	.0n 800	.0n 900	.0n 1.000u

<u>RESULT</u>

Thus the functional verification of the CMOS Inverter through schematic entry, and the output also verified successfully.

Universal Gates

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To perform the functional verification of the universal gate through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	S-Edit using CadanceTool.	

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the schematic of CMOS Inverter using S-edit.
2	Perform Transient Analysis of the CMOS Inverter.
3	Obtain the output waveform from W-edit.
4	Obtain the spice code using T-edit

PAL - 6149

1

rvenkatme.weebly.com

NAND GATE

SIMULATED WAVEFORM:

ner T-Spice 15.10	C:\DOCUME~1\VL	SI\LOCALS~1\Temp\nand.sp	12:36:25 PM 11/30/2
Out:V			
0			
0			
0			
b:V			
0			
0			
0			łł
0			
0			
0			
0			
0		(
0			,,
0			
			tereneral tereneral Content of the second
0.000 100.0n 200.	0n 300.0n 400.0n	500.0n 600.0n 70	

rvenkatme.weebly.com

NOR GATE

SCHEMATIC DIAGRAM

SIMULATED WAVEFORM:

Tanner T-Spice 15.10	C:\DOCUME~1\VLSI\LOCALS~1\Temp\nor.sp 3:40:42 PM 11/			
5.000 Out:V				
4.000				
ω3.000				
₹				
1.000				
0.000				
5.000 b:V				
4.000				
<u>م</u> 3.000 -				
≥2.000				
1.000				
0.000				
5.000 a.v				
4.000				
<u>نام 3.000 (</u>				
≥2.000 -				
1.000				
0.000 100.0n 200.0	In 300.0n 400.0n 500.0n 600.0n 700.0n Seconds	800.0n 900.0n 1.000		

<u>RESULT</u>

Thus the functional verification of the NAND& NOR Gate through schematic entry, and the output also verified successfully

Differential Amplifier

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To calculate the gain, bandwidth and CMRR of a differential amplifier through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	S-Edit using CadanceTool.	21

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the schematic of differential amplifier using S-edit and generate the symbol.
2	Draw the schematic of differential amplifier circuit using the generated symbol.
3	Perform AC Analysis of the differential amplifier.
4	Obtain the frequency response from W-edit.
5	Obtain the spice code using T-edit.

rvenkatme.weebly.com

SCHEMATIC DIAGRAM

rvenkatme.weebly.com

DEPT OF ECE

<u>RESULT</u>

Thus the functional verification of the Differential Amplifier through schematic entry, and the output also verified successfully

rvenkatme.weebly.com

Layout Of CMOS Inverter

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To draw the layout of CMOS Inverter using L-Edit and extract the SPICE code.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	L-Edit using CadanceTool.	1

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the CMOS Inverter layout by obeying the Lamda Rules using Ledit.
2	Poly - 2λ
	ii. Active contact - 2λ
	iii. Active Contact – Metal - 1 λ
	iv. Active Contact – Active region - 2λ
	v. Active Region – Pselect - 3 λ
	vi. Pselect – nWell - 3λ
3	Check DRC to verify whether any region violate the lamda rule
4	Setup the extraction and extract the spice code using T-spice.

rvenkatme.weebly.com

CMOS INVERTER

SIMULATED WAVEFORM:

rvenkatme.weebly.com

LAYOUT DIAGRAM:

<u>RESULT</u>

Thus the layout of CMOS Inverter using L-Edit and extract the SPICE code, and the output also verified successfully.

Design Of a 10 Bit Number Controlled Oscillator

Ex.No:

Date:

OBJECTIVE OF THE EXPERIMENT

To perform the functional verification of the design of a 10 bit number controlled oscillator through schematic entry.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	S-Edit using CadanceTool	

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the schematic of CMOS Inverter using S-edit.
2	Perform Transient Analysis of the CMOS Inverter
3	Obtain the output waveform from W-edit
4	Obtain the spice code using T-edit.

SCHEMATIC DIAGRAM

rvenkatme.weebly.com

DEPT OF ECE

SIMULATED WAVEFORM:

<u>RESULT</u>

Thus the functional verification of the design of a 10 bit number controlled oscillator through schematic entry.

Automatic Layout Generation

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To generate the Layout from the schematic using the Tanner tool and verify the layout using simulation.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	S-Edit, L-Edit using Tanner Tool	

b) Procedure for doing the experiment

S.No	Details of the step
1	Draw the schematic using S Edit and verify the output in W Edit.
2	Extract the schematic and store it in another location
3	Open the L Edit, open the design in Ring VCO
4	Create the new cell
5	Open the schematic file (.sdl) using the SDL Navigator
6	Do the necessary connections as per the design.
7	Name the ports and check the design for the DRC Rules
8	Locate the Destination file in the setup Extract window and extract
	the layout.
9	Include the Library and the print voltage statements in the net list
	which is obtained.
10	Verify the layout design using W Edit.

rvenkatme.weebly.com

SCHEMATIC DIAGRAM

rvenkatme.weebly.com

DEPT OF ECE

LAYOUT:

rvenkatme.weebly.com

DEPT OF ECE

SIMULATED WAVEFORM:

<u>RESULT</u>

Thus the the Layout from the schematic using the Cadance tool and verify the layout using simulation and the output also verified successfully.

Implementation Of Flip-Flops

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To implement Flip-flops using Verilog HDL.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	1

b) Procedure for doing the experiment

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name.
3	Select Verilog module.
4	Type your verilog coding.
5	Check for syntax.
6	Select the new source of test bench waveform
7	Choose behavioral simulation and simulate it by Xilinx ISE simulator.
8	Verify the output.

rvenkatme.weebly.com

ARAJA/

41 - 51482

<u>D Flip-Flop</u>

// Module Name: DFF

module DFF(Clock, Reset, d, q);
input Clock;

input Reset; input d; output q;

reg q;

always@(posedge Clock or negedge Reset) if (~Reset) q=1'b0;

else q=d;

endmodule T Flip-Flop

// Module Name: TFF

module TFF(Clock, Reset, t, q);

input Clock;

input Reset;

input t;

output q;

reg q;

always@(posedge Clock , negedge Reset)

```
if(~Reset) q=0;
```

```
else
if (t) q=~q;
else q=q;
endmodule
```

SRV ENGINEERING COLLEGE	rvenkatme.weebly.com	DEPT OF ECE
JK Flip-Flop		
// Module Name: JKFF		
module JKFF(Clock, Reset, j, k, q);		
input Clock;		
input Reset;		
input j;	ANTHORN THE	
input k;		
output q;	C/L	
reg q;		
always@(posedge Clock, negedge Reset	t)	
if(~Reset)		a .
q=0;	000	
else		
begin		
case({j,k})		
2'b00: q=q;		
2'b01: q=0;	000A1 . 61405	
2'b10: q=1;		
2'b11: q=~q;		
endcase		
end		
endmodule		

<u>RESULT</u>

Thus the flip-flops program was implemented using tools and the output also verified successfully.

Implementation Of Counters

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To implement Counters using Verilog HDL.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	1

b) Procedure for doing the experiment

S.No	Details of the step
1	Double click the project navigator and select the option File-New project.
2	Give the project name.
3	Select Verilog module.
4	Type your verilog coding.
5	Check for syntax.
6	Select the new source of test bench waveform
7	Choose behavioral simulation and simulate it by xilinx ISE simulator.
8	Verify the output.

AARAJAN

41 - 51482

ENG

2- Bit Counter

// Module Name: Count2Bit module

Count2Bit(Clock, Clear, out);

input Clock;

input Clear;

output [1:0] out;

reg [1:0]out;

always@(posedge Clock, negedge Clear)

if((~Clear) || (out>=4))

out=2'b00;

else

out=out+1;

endmodule

<u>RESULT</u>

Thus the counters program was implemented using tools and the output also verified successfully.

Implementation Of Registers

Ex No:

Date:

OBJECTIVE OF THE EXPERIMENT

To implement Registers using Verilog HDL.

FACILITIES REQUIRED AND PROCEDURE

a) Facilities required to do the experiment

S.No.	SOFTWARE REQUIREMENTS	Quantity
1	Xilinx Project navigator – ISE 8.1	1

b) Procedure for doing the experiment

S.No	Details of the step	
1	Double click the project navigator and select the option File-New project.	
2	Give the project name.	
3	Select Verilog module.	
4	Type your Verilog coding.	
5	Check for syntax.	
6	Select the new source of test bench waveform	
7	Choose behavioral simulation and simulate it by Xilinx ISE simulator.	
8	Verify the output.	

rvenkatme.weebly.com

ARAJAN

041 - 61482

ENG

<u>2 – Bit Register</u>

// Module Name: Reg2Bit

module Reg2Bit(Clock, Clear, in, out);

input Clock;

input Clear; input [0:1] in;

output [0:1] out;

reg [0:1] out;

always@(posedge Clock, negedge Clear) if(~Clear)

out=2'b00;

else out=in;

endmodule

<u>RESULT</u>

Thus the Registers program was implemented using tools and the output also verified successfully.